US009299042B2

a2 United States Patent

Eck

US 9,299,042 B2
Mar. 29, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PREDICTING EDGES IN TEMPORAL
NETWORK GRAPHS DESCRIBED BY
NEAR-BIPARTITE DATA SETS

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

Applicant: Raytheon Company, Waltham, MA

Inventor:

Assignee:

Notice:

Appl. No.:

Filed:

US 2015/0046384 A1~ Feb. 12,2015
Int. CI.

GOG6N 5/04 (2006.01)

GOGF 17/18 (2006.01)

G06Q 10/06 (2012.01)

USS. CL

CPC oo

None

Us)

Christopher R. Eck, Dunedin, FL. (US)

Raytheon Company, Waltham, MA

Us)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 287 days.
13/963,439
Aug. 9, 2013

Prior Publication Data

G060 10/06 (2013.01); GO6F 17/18

(2013.01); GO6N 5/04 (2013.01)
Field of Classification Search

See application file for complete search history.

200

882

Output All
Estimates:
Model Match,

810

830

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0027890 Al* 1/2008 Chickeringetal. .......... 706/52

2013/0246020 Al*  9/2013 Zeng ......ccccooevvvvviiviiniinnn. 703/2

2014/0108994 Al* 42014 Medlock et al. ... . 715/773

2014/0317033 Al* 10/2014 Mojsilovic et al. . 706/17

2014/0317038 Al* 10/2014 Mojsilovicetal. ............. 706/46
OTHER PUBLICATIONS

Cheng et al, Prediction of Drug-Target Interactions and Drug Repo-
sitioning via Network-Based Inference, 2012.*

Mankoff et al, Providing Integrated Toolkit-Level Support for Ambi-
guity in Recognition-Based Interfaces, 2000.*

* cited by examiner

Primary Examiner — Stanley K Hill

Assistant Examiner — Mikayla Chubb

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

Embodiments of a system and method for predicting a future
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set of data in the first domain may be represented as a network
graph. The set of data in the first domain is mapped into a set
of'data in a second domain. A plurality of prediction models
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1
PREDICTING EDGES IN TEMPORAL
NETWORK GRAPHS DESCRIBED BY
NEAR-BIPARTITE DATA SETS

BACKGROUND

Generally, analysts manually use a set oftools to determine
the most likely future state of a data set that is often described
in a very qualitative manner. This can be a time-intensive task
both in terms of algorithm development and execution. The
general field of predictive analytics is often explored in this
context to accomplish such a prediction.

Predictive analytics uses techniques such as regression
models, discrete choice models, time series models, etc. with
varying levels of success and timelines. For many of these
techniques, a situation or collection of interrelated actors/
objects is represented as a graph which has well-known ways
of being characterized using scalars such as betweenness,
centrality, cliques, etc. These graphs are defined as a set of
nodes and edges. Many techniques utilize a known pattern of
nodes and edges to compared directly with (portions of) the
graph to determine a match and recognize a situation. In this
approach, the recognition is on current state; there is no
capability to match the past of the graph with the present or
predict the future of the graph and the algorithm is far from
real-time.

However, predictive analytics have at least one of the fol-
lowing shortcomings, e.g., lack scalability, do not consider
multiple simultaneous models for evolving the graph, or are
brittle, e.g., highly parameterized with hundreds or thousands
of parameters.

Accordingly, there is a gap in meeting the current goals of
analyzing large data sets. For example, one unmet goal
involves the ability to automatically predict the evolution of
data sets, e.g., situations, relationships, etc. A variety of tech-
niques are currently employed or being developed that
attempt to solve this problem. Some of these techniques
include pattern recognition, traditional predictive analytics,
evolution of macroscopic and microscopic characteristic sca-
lar properties of network graphs, examination of Internet
topology at different times, analysis using graph measures,
temporal pattern matching at a node-level, maximum likeli-
hood estimators, e.g., probabilistic predictions, and growing
graphs by replicating existing structures and patterns.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a subset of data for analysis to predict a
future state of the data according to an embodiment;

FIG. 2 illustrates a graph of relationships between nodes of
interest associated with the data according to an embodiment;

FIG. 3 illustrates an alternate representation of the data
according to an embodiment;

FIG. 4 illustrates a view of the method for predicting a
future state of data according to an embodiment;

FIG. 5a-c illustrates the results of predictions for several
nodes according to an embodiment;

FIG. 6 shows a comparison chart showing the differences
between the method according to an embodiment and other
approaches;

FIG. 7 is a graph showing the average error by Area and
prediction methodology according to an embodiment;

FIG. 8 illustrates a flowchart of a method for predicting a
future state of data according to an embodiment;

FIG. 9 illustrates a flow diagram of a mathematical tech-
nique for predicting a future state of data according to an
embodiment; and
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2

FIG. 10 illustrates a block diagram of an example machine
for predicting a future state of data according to an embodi-
ment.

DETAILED DESCRIPTION

The following description and the drawings sufficiently
illustrate specific embodiments to enable those skilled in the
art to practice them. Other embodiments may incorporate
structural, logical, electrical, process, and other changes. Por-
tions and features of some embodiments may be included in,
or substituted for, those of other embodiments. Embodiments
set forth in the claims encompass available equivalents of
those claims.

To predict evolution of graphs, some techniques have cal-
culated macroscopic properties of graphs and include the
calculation of characteristic scalar variables and analysis of
the values over time. Other techniques use microscopic scalar
measures to determine the most likely future state for a node,
e.g., marketing analyses that use recency or the length of time
since a customer’s last purchase to predict a new sale. For this
example, a model is developed based on historical data that
states that the smaller the value of recency, the greater the
probability that the customer will purchase again.

Techniques according to an embodiment are used to pro-
vide predictions regarding data. Recursion techniques, for
example, may be applied to a particular class of data repre-
sentations, e.g., the near-bipartite data set. Recursion is useful
for estimation and prediction, and is especially useful when
applied to large graphs. Multiple prediction models may be
considered at once and hybrid models may be identified that
fit temporal data. Problems associated with processing large
graph while predicting individual node/edge behaviors using
time-consuming/uncertain pattern matching algorithms are
minimized.

FIG. 1 illustrates a subset of data 100 for analysis to predict
a future state of the data according to an embodiment. In FIG.
1, total crime 110 for the year 2011 2012 and for the year 2011
114 across seven areas 120-132, e.g. Areas, districts, etc. is
shown. In addition to data regarding total crime 110, data
associated with total violent crime 140, total property crime
150 and homicides 160 is also shown. Those skilled in the art
will recognize that the data shown in FIG. 1 is merely a subset
of possible data and that data used in embodiments may
include substantially more data than shown in FIG. 1.

Data such as illustrated in FIG. 1, may be manipulated to
create a network graph, G(n, e), with nodes, n, and edges, e.
These observational data may include any data that can be
represented as nodes and edges such as social network data,
logistics data on component failures, financial data, customer
relationship data, etc.

FIG. 2 illustrates a graph 200 of relationships (edges)
between nodes of interest associated with the data according
to an embodiment. In FIG. 2, the nodes 210 represent sus-
pected terrorists. The nodes may be linked to other suspected
terrorists that each have contacted, wherein the contacts may
be represented by lines 220.

FIG. 3 illustrates an alternate representation of the data 300
according to an embodiment. In FIG. 3, the suspected terrorist
310 are presented in a matrix 320 wherein mutual communi-
cation is identified by numbers 330. The actual contacts may
be color-coded to visually indicate higher number of contact
matches. The data 300 may be mapped into another domain
that may provide additional observational or analytical infor-
mation.

FIG. 4 illustrates a view of the method 400 for predicting a
future state of data according to an embodiment. In FIG. 4,
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data is provided in a mapping 410 that includes nodes 412 and
edges 414 showing the relationship between node elements.
The mapping 410 is converted to an alternate representation
420. In FIG. 4, the alternate representation 420 may be an
alternate matrix that represents the same data in another for-
mat. A waveform 430 is generated based on the alternative
mapping 420. The waveform 430 is processed using interact-
ing multiple models (IMM) to derive a predicted waveform
440. The predicted waveform 440 is derived based on an
analysis of the data set to characterize one or more underlying
models for the data, e.g., using Fourier transforms. The pre-
dicted waveform 440 is then reverse mapped to an alternate
representation 450, which is in a different domain. In FIG. 4,
the alternate representation 450 may be an alternate matrix.

There are many techniques for mapping a network graph to
different domains, including using such measures as central-
ity, connectivity, shortest path, etc. A predicted network map
460 may be obtained from the alternate matrix representation
by reversing the process. The estimation and prediction used
to process the original waveform 430 to produce the predicted
waveform 440 may include the use of recursion methods to
increase the ability to process high data loads. For example,
Kalman Filter equations are one recursion method to provide
an estimate. To increase effectiveness, e.g., improve predic-
tive accuracy, multiple predictions models may be considered
at once.

For example, Fourier transforms may be used to analyze
the data and drive the characteristics of the prediction models.
Kalman filters are applied to the different prediction models
characterized by the Fourier transforms. The different models
are applied to provide a prediction for each. The predictions
are compared. If three prediction models are used, each pre-
diction model uses its own Kalman filter, and each Kalman
filter generates its own estimate and its own prediction. The
IMM framework provides for multiple models by allowing
distinct prediction models for each of the underlying predic-
tionmodels. The IMM combines the predictions in an optimal
fashion to get the best match and automatically generates a
measure of uncertainty in the match, e.g., the best match may
be to use 50% of prediction model A, 25% of prediction
model B and 25% of prediction model C, which is determined
to have a 95% confidence rationale for that match.

FIG. Sa-cillustrates graphs 500,560, 570 of predictions for
several nodes according to an embodiment. In FIGS. Sa-c,
crime data are aggregated by quarter (in 3 month intervals),
thus the prediction time is 3 months. FIG. 5a is a graph 500
showing the results of crime predictions versus observations
for Area-1 512 according to an embodiment. The actual
crimes in that quarter for the year 510 are shown by line 1 520.
Line 2 522 represents the predictions that take into account
data from prior quarters. FIG. Sa shows the results for Area-1
512 and shows good agreement between predictions line 2
522 and actual data represented by line 1 520, especially in
2010514.

FIG. 55 is a graph 560 showing the results of crime pre-
dictions for Area-5 according to an embodiment. FIG. 55
shows the predictions 530 in Area-5 532 resulting from the
automated adaptive model parameter adjustments according
to an embodiment. The actual crimes are shown for each
quarter of the year by line 1 540. The predictions, which are
based on data from prior quarters, are shown by line 2 530.
For Area-5 532, more than half of the predictions 550, 552
have little difference when compared to truth (observed data).

FIG. 5c¢ is a graph 500 showing the results of crime predic-
tions for Area-3 according to an embodiment. FIG. 5¢ shows
the predictions for Area-3 572, which are the most challeng-
ing. InFIG. 5¢, the actual crimes per quarter are shown by line

5

10

15

20

25

30

35

40

45

50

55

60

65

4

1 580. Line 2 570 represents the predictions that take into
account data from prior quarters.

FIG. 6 shows a comparison chart 600 that describes results
comparing different methods according to an embodiment
and other approaches. In FIG. 6, each method 610 is shown
with an associated average error versus truth (observed data)
620. The IMM method 630 according to an embodiment,
which may also be referred to herein as the CAPPING (capa-
bility for prediction in network graphs) method, produces an
average error versus the truth or actual observed crimes hav-
ing a 119 value 640. The linear fit 632 produces an average
error versus the truth (observed) having a 141 value 642. The
zero crime rate method 634 produces an average error versus
the truth (observed) having a 137 value 644. The zero crime
rate method 634 bases predictions on the previous months’
data, i.e., next month’s crime rate will be the same as the
previous month’s crime rate. The linear fit approach 632 fits
data prior to the predicted time to a linear least squares fit. The
errors are average differences between the prediction and
truth for quarters (times) and across Areas. Accordingly, there
is a 17% improvement from the IMM method 630 over the
linear fit method 632 and a 13% improvement from the IMM
method 630 over the zero crime rate method 634.

FIG. 71s a graph 700 showing the average error by Area and
prediction methodology according to an embodiment. FIG. 7
shows a contrast in the errors from linear fit 710, zero slope
crime rate 720, and the IMM or CAPPING method 730
according to an embodiment. Significant improvement 741,
746 is seen for the IMM method 730 compared to the others
for Area-1 751 and Area-6 756, with moderate improvements
744,745, 748 for Area-4 754, Area-5 755, and Area-8 758. In
the Areas, including Area-1 751, Area-4 754, Area-5 755,
Area-6 756 and Area-8 758, the average error for the IMM
method 730 is less than or equal to that of the other
approaches, i.e., the linear fit 710 and the zero slope crime rate
720 methods.

In addition to the main benefit of predicting a network
graph, and its underlying relationships between nodes, into
the future, an analyst has the opportunity to recognize how the
network graph might be perturbed in order to effect changes.
For example, if a network graph is predicted to depart from
the model norm, then determinations could be made on how
to return the graph back to a norm by examining the nature of
the departure points. The result of such an examination/analy-
sis may provide input to a course of action development
process. In this way, this proposed capability drives applica-
tion of effects to target outcomes.

The IMM method 730 according to an embodiment also
has the potential to inherently drive the definition of new
predictive models by automatically considering hybrids of
existing predictive models. When predictions match a par-
ticular hybrid model with enough frequency, the hybrid
model may become its own distinct model and replace other
models that are used less frequently. In this way, the algorithm
may automatically aid an analyst in adapting to evolving
enemy tactics.

This capability has the potential to positively impact
domains such as social network analysis, cyber-warfare and
protection, infrastructure protection, failure prediction prog-
nostics in logistics, revenue prediction, etc. by enhancing
network graph analysis via reduced analysis time.

FIG. 8illustrates a flowchart 800 of a method for predicting
a future state of data according to an embodiment. In FIG. 8,
a determination is made whether training data is available. If
yes 812, the training data is analyzed 822. Training data 820
may be provided for analysis 822. If no 814, training data is
ingested 830. Signal processing techniques may be used to
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characterize prediction models 832. The characterization of
the prediction models is provided to one or more prediction
models 860. Analysis may be used 834 to create prediction
models 860. Default prediction models may be included 836.
After the training data is analyzed 822, the initial prediction
parameters are optimized 824. The optimized prediction
parameters are provided to the prediction models 860.

After data is ingested 830, the data may be translated into
a network graph analytical form, e.g., a matrix 840. The data
is then mapped into another domain 850. The data mapped
into another domain 850 is used, along with prediction mod-
els 860, to update an estimate for the current system 870. A
system state is predicted 880 using the prediction models 860,
e.g., probabilistically. All estimates, model matches, states,
estimates, etc. are provided as output 882.

A determination is made whether to modify the data 890. If
yes 892, the process returns to translate the data into a net-
work graph analytical form 840. If no 894, a determination is
made whether new data has been received 896. If yes 897, the
process returns to ingest data 830. If no 898, the process
terminates.

FIG. 9 illustrates a flow diagram 900 of a mathematical
technique for predicting a future state of data according to an
embodiment. FIG. 9 shows mapping of observational data,
G(n,, e,) 910, into another domain, W(n,, e,) 920, with M
912: G(n,, e,)—=W(n,, e,). In the new domain, W, the data
may be more easily manipulated using particular calculations
and techniques. After application of at least one prediction
model, P 922: W(n,, e,)—>W(n,, e,), the predicted state,
W(n,, e,) 930, is then reverse mapped back to the original
domain with R 932: W(n,, e,)—G(n,, e,), the predicted data
G(n,, e,) 940.

It is expected that not every mapping, M 912, will allow a
reverse mapping, R 932, back to the original domain, but
priority is given to those that do. In addition, the use of
multiple prediction models, P, 922, along with a calculation
of the level of match of observational data to the different
models can be interpreted as a measure of recognition of the
current situation. A quantitative measure of confidence may
also be provided.

Techniques such as block-modeling or role assignment
may be used to reduce the complexity of a large graph and
make it more tenable for manipulation. However, this proce-
dure could hide at least some details of the network graph, yet
may allow faster insights where none were available before.

The selection of predictive models is one of the challenges
to predictive modeling. Ordinarily models may be chosen
based on known models according to behavior, depending on
what is to be recognized and predicted as well as the nature of
the data. Prediction model development may use a couple of
models combined with an analysis of the data set to create one
or more underlying models. The comparison between the
prediction and actual evolution of the graph is a measure of
effectiveness.

Selection of mapping techniques is also a challenge. There
is likely no mapping that is best suited for all graphs or data
sets. [t is expected that the particular mapping technique used
will be driven both by the data composing the graph and also
how the data is represented in the graph, G(n,, e,) 920. Note
that the suitability of the measure for the reverse mapping, R
932, is also considered when choosing a mapping technique,
M 932.

In addition, it is difficult to find open source data sets that
are sufficiently well-behaved to validate results of prediction
models. However, a crime data set may be used due to its
availability and its representation of real world characteris-
tics, i.e., noisy data. Other interesting data sets include com-
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munications data between individuals or other indications of
relationships between individuals such as indications of
meetings (from HUMINT, IMINT, etc.) or job-related orga-
nizational structure. Herein, Washington, D.C. crime data set
will be used to illustrate embodiments due to its availability
and its representation of real world characteristics including
noisy data.

Mapping, M 912, may be accomplished many ways. For
example, a simple function that aggregates the raw data into
bins may be used. Three prediction models may be developed
and incorporated simultaneously as the prediction functions,
P, P,, and P; 924. For the Washington, D.C. crime data set, a
graph will exhibit an edge that appears between the crime
node and an Area/location node when a crime occurs in that
Area.

FIG. 10 illustrates a block diagram of an example machine
1000 for predicting a future state of data according to an
embodiment upon which any one or more of the techniques
(e.g., methodologies) discussed herein may perform. In alter-
native embodiments, the machine 1000 may operate as a
standalone device or may be connected (e.g., networked) to
other machines. In a networked deployment, the machine
1000 may operate in the capacity of a server machine and/or
a client machine in server-client network environments. In an
example, the machine 1000 may act as a peer machine in
peer-to-peer (P2P) (or other distributed) network environ-
ment. The machine 1000 may be a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a mobile telephone, a web appliance, a network
router, switch or bridge, or any machine capable of executing
instructions (sequential or otherwise) that specify actions to
be taken by that machine. Further, while a single machine is
illustrated, the term “machine” shall also be taken to include
any collection of machines that individually or jointly execute
a set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein, such as cloud
computing, software as a service (SaaS), other computer clus-
ter configurations.

Examples, as described herein, may include, or may oper-
ate on, logic or a number of components, modules, or mecha-
nisms. Modules are tangible entities (e.g., hardware) capable
of performing specified operations and may be configured or
arranged in a certain manner. In an example, circuits may be
arranged (e.g., internally or with respect to external entities
such as other circuits) in a specified manner as a module. In an
example, at least a part of one or more computer systems (e.g.,
astandalone, client or server computer system) or one or more
hardware processors 1002 may be configured by firmware or
software (e.g., instructions, an application portion, or an
application) as a module that operates to perform specified
operations. In an example, the software may reside on at least
one machine readable medium. In an example, the software,
when executed by the underlying hardware of the module,
causes the hardware to perform the specified operations.

Accordingly, the term “module” is understood to encom-
pass a tangible entity, be that an entity that is physically
constructed, specifically configured (e.g., hardwired), or tem-
porarily (e.g., transitorily) configured (e.g., programmed) to
operate in a specified manner or to perform at least part of any
operation described herein. Considering examples in which
modules are temporarily configured, a module need not be
instantiated at any one moment in time. For example, where
the modules comprise a general-purpose hardware processor
1002 configured using software; the general-purpose hard-
ware processor may be configured as respective different
modules at different times. Software may accordingly con-
figure a hardware processor, for example, to constitute a
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particular module at one instance of time and to constitute a
different module at a different instance of time. The term
“application,” or variants thereof, is used expansively herein
to include routines, program modules, programs, compo-
nents, and the like, and may be implemented on various
system configurations, including single-processor or multi-
processor systems, microprocessor-based electronics, single-
core or multi-core systems, combinations thereof, and the
like. Thus, the term application may be used to refer to an
embodiment of software or to hardware arranged to perform
at least part of any operation described herein.

Machine (e.g., computer system) 1000 may include a hard-
ware processor 1002 (e.g., a central processing unit (CPU), a
graphics processing unit (GPU), a hardware processor core,
orany combination thereot), a main memory 1004 and a static
memory 1006, at least some of which may communicate with
others via an interlink (e.g., bus) 1008. The machine 1000
may further include a display unit 1010, an alphanumeric
input device 1012 (e.g., a keyboard), and a user interface (UI)
navigation device 1014 (e.g., a mouse). In an example, the
display unit 1010, input device 1012 and Ul navigation device
1014 may be a touch screen display. The machine 1000 may
additionally include a storage device (e.g., drive unit) 1016, a
signal generation device 1018 (e.g., a speaker), a network
interface device 1020, and one or more sensors 1021, such as
a global positioning system (GPS) sensor, compass, acceler-
ometer, or other sensor. The machine 1000 may include an
output controller 1028, such as a serial (e.g., universal serial
bus (USB), parallel, or other wired or wireless (e.g., infrared
(IR)) connection to communicate or control one or more
peripheral devices (e.g., a printer, card reader, etc.).

The storage device 1016 may include at least one machine
readable medium 1022 on which is stored one or more sets of
data structures or instructions 1024 (e.g., software) embody-
ing or utilized by any one or more of the techniques or func-
tions described herein. The instructions 1024 may also reside,
at least partially, additional machine readable memories such
as main memory 1004, static memory 1006, or within the
hardware processor 1002 during execution thereof by the
machine 1000. In an example, one or any combination of the
hardware processor 1002, the main memory 1004, the static
memory 1006, or the storage device 1016 may constitute
machine readable media.

While the machine readable medium 1022 is illustrated as
a single medium, the term “machine readable medium” may
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that configured to store the one or more instructions 1024.

The term “machine readable medium” may include any
medium that is capable of storing, encoding, or carrying
instructions for execution by the machine 1000 and that cause
the machine 1000 to perform any one or more of the tech-
niques of the present disclosure, or that is capable of storing,
encoding or carrying data structures used by or associated
with such instructions. Non-limiting machine readable
medium examples may include solid-state memories, and
optical and magnetic media. In an example, a massed
machine readable medium comprises a machine readable
medium with a plurality of particles having resting mass.
Specific examples of massed machine readable media may
include: non-volatile memory, such as semiconductor
memory devices (e.g., Electrically Programmable Read-Only
Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM)) and flash memory devices;
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-ROM
disks.
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The instructions 1024 may further be transmitted or
received over a communications network 1026 using a trans-
mission medium via the network interface device 1020 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, internet protocol (IP), transmission control protocol
(TCP), user datagram protocol (UDP), hypertext transfer pro-
tocol (HTTP), etc.). Example communication networks may
include a local area network (LLAN), a wide area network
(WAN), a packet data network (e.g., the Internet), mobile
telephone networks ((e.g., channel access methods including
Code Division Multiple Access (CDMA), Time-division
multiple access (ITDMA), Frequency-division multiple
access (FDMA), and Orthogonal Frequency Division Mul-
tiple Access (OFDMA) and cellular networks such as Global
System for Mobile Communications (GSM), Universal
Mobile Telecommunications System (UMTS), CDMA 2000
1x* standards and Long Term Evolution (LTE)), Plain Old
Telephone (POTS) networks, and wireless data networks
(e.g., Institute of Electrical and Electronics Engineers (IEEE)
802 family of standards including IEEE 802.11 standards
(WiF1), IEEE 802.16 standards (WiMax®) and others), peer-
to-peer (P2P) networks, or other protocols now known or later
developed.

For example, the network interface device 1020 may
include one or more physical jacks (e.g., Ethernet, coaxial, or
phone jacks) or one or more antennas to connect to the com-
munications network 1026. In an example, the network inter-
face device 1020 may include a plurality of antennas to wire-
lessly communicate using at least one of single-input
multiple-output  (SIMO), multiple-input multiple-output
(MIMO), or multiple-input single-output (MISO) tech-
niques. The term “transmission medium” shall be taken to
include any intangible medium that is capable of storing,
encoding or carrying instructions for execution by the
machine 1000, and includes digital or analog communica-
tions signals or other intangible medium to facilitate commu-
nication of such software.

The above detailed description includes references to the
accompanying drawings, which form a part of the detailed
description. The drawings show, by way of illustration, spe-
cific embodiments that may be practiced. These embodiments
are also referred to herein as “examples.” Such examples may
include elements in addition to those shown or described.
However, also contemplated are examples that include the
elements shown or described. Moreover, also contemplate are
examples using any combination or permutation of those
elements shown or described (or one or more aspects thereof),
either with respect to a particular example (or one or more
aspects thereof), or with respect to other examples (or one or
more aspects thereof) shown or described herein.

Publications, patents, and patent documents referred to in
this document are incorporated by reference herein in their
entirety, as though individually incorporated by reference. In
the event of inconsistent usages between this document and
those documents so incorporated by reference, the usage in
the incorporated reference(s) are supplementary to that of this
document; for irreconcilable inconsistencies, the usage in this
document controls.

In this document, the terms “a” or “an” are used, as is
common in patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” is used
to refer to a nonexclusive or, such that “A or B” includes “A
but not B,” “B but not A,” and “A and B,” unless otherwise
indicated. In the appended claims, the terms “including” and
“in which” are used as the plain-English equivalents of the
respective terms “comprising” and “wherein.” Also, in the
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following claims, the terms “including” and “comprising” are
open-ended, that is, a system, device, article, or process that
includes elements in addition to those listed after such a term
in a claim are still deemed to fall within the scope of that
claim. Moreover, in the following claims, the terms “first,”
“second,” and “third,” etc. are used merely as labels, and are
not intended to suggest a numerical order for their objects.

The above description is intended to be illustrative, and not
restrictive. For example, the above-described examples (or
one or more aspects thereof) may be used in combination with
others. Other embodiments may be used, such as by one of
ordinary skill in the art upon reviewing the above description.
The Abstract is to allow the reader to quickly ascertain the
nature of the technical disclosure, for example, to comply
with 37 C.F.R. §1.72(b) in the United States of America. It is
submitted with the understanding that it will not be used to
interpret or limit the scope or meaning of the claims. Also, in
the above Detailed Description, various features may be
grouped together to streamline the disclosure. However, the
claims may not set forth features disclosed herein because
embodiments may include a subset of said features. Further,
embodiments may include fewer features than those dis-
closed in a particular example. Thus, the following claims are
hereby incorporated into the Detailed Description, with a
claim standing on its own as a separate embodiment. The
scope of the embodiments disclosed herein is to be deter-
mined with reference to the appended claims, along with the
full scope of equivalents to which such claims are entitled.

What is claimed is:

1. A method for predicting a future state of a set of data,
comprising:

obtaining a set of data in a first domain;

mapping the set of data into a second domain;

applying a plurality of prediction models to the set of data

in the second domain to produce a plurality of predicted
sets of data including applying a Fourier transform to
characterize each of the plurality of prediction models;
combining the predicted sets of data to generate a com-
bined predicted set of data having a best match; and
reverse mapping the combined predicted sets of data hav-
ing the best match to the first domain.

2. The method of claim 1, wherein the applying the plural-
ity of prediction models to the set of data in the second
domain further comprises applying an Interacting Multiple
Models (IMM) approach with a plurality of prediction mod-
els to produce a plurality of predicted sets of data in the
second domain.

3. The method of claim 1, wherein the combining the
predicted sets of data to generate a combined predicted set of
data having a best match further comprises generating a mea-
sure of uncertainty associated with the combined predicted
set of data having a best match.

4. The method of claim 1 further comprising calculating a
level of match of the set of data in the first domain to the
predicted set of data to determine a measure of recognition of
a situation associated with the set of data in the first domain.

5. The method of claim 1 further comprising quantifying a
measure of confidence of a match between the set of data in
the first domain and the predicted set of data.

6. The method of claim 1, wherein the mapping the set of
data in the first domain comprises applying a function to the
set of data in the first domain that aggregates the set of data in
the first domain.

7. The method of claim 1 further comprising representing
the set of data in the first domain as a network of nodes and
edges and wherein the applying the plurality of prediction
models to the set of data in the second domain to produce a
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plurality of predicted sets of data further comprises applying
at least one prediction model to the set of data in the second
domain to predict an evolution of the network representing
the set of data in the first domain.

8. A device for predicting a future state of a set of data,
comprising:

an input device for providing a set of data in a first domain;

memory, coupled to the input device, for storing the set of

data in the first domain;

aprocessor, coupled to the memory, the processor arranged

to:

mapping the set of data into a second domain;

applying a plurality of prediction models to the set of
data in the second domain to produce a plurality of
predicted sets of data including applying a Fourier
transform to characterize each of the plurality of pre-
diction models;

combining the predicted sets of data to generate a com-
bined predicted set of data having a best match; and

reverse mapping the combined predicted sets of data
having the best match to the first domain.

9. The device of claim 8, wherein the processor is further
arranged to apply an Interacting Multiple Models (IMM)
approach with a plurality of prediction models to produce a
plurality of predicted sets of data in the second domain.

10. The device of claim 8, wherein the processor is further
arranged to generate a measure of uncertainty associated with
the combined predicted set of data having a best match.

11. The device of claim 8, wherein the processor is further
arranged to calculate a level of match of the set of data in the
first domain to the predicted set of data to determine a mea-
sure of recognition of a situation associated with the set of
data in the first domain.

12. The device of claim 8, wherein the processor is further
arranged to apply a function to the set of data in the first
domain that aggregates the set of data in the first domain.

13. The device of claim 8, wherein the processor is further
arranged to represent the set of data in the first domain as a
network of nodes and edges and to apply at least one predic-
tion model to the set of data in the second domain to predict an
evolution of the network representing the set of data in the
first domain.

14. At least one non-transitory machine readable medium
comprising instructions that, when executed by the machine,
cause the machine to perform operations for predicting a
future state of a set of data, the operations comprising:

obtaining a set of data in a first domain;

mapping the set of data into a second domain;

applying a plurality of prediction models to the set of data

in the second domain to produce a plurality of predicted
sets of data including applying a Fourier transform to
characterize each of the plurality of prediction models;
combining the predicted sets of data to generate a com-
bined predicted set of data having a best match; and
reverse mapping the combined predicted sets of data hav-
ing the best match to the first domain.

15. The at least one non-transitory machine readable
medium of claim 14, wherein the applying the plurality of
prediction models to the set of data in the second domain
further comprises applying an Interacting Multiple Models
(IMM) approach with a plurality of prediction models to
produce a plurality of predicted sets of data in the second
domain.

16. The at least one non-transitory machine readable
medium of claim 14, wherein the combining the predicted
sets of data to generate a combined predicted set of data
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having a best match further comprises generating a measure
of uncertainty associated with the combined predicted set of
data having a best match.

17. The at least one non-transitory machine readable
medium of claim 14, further comprising calculating a level of 5
match of the set of data in the first domain to the predicted set
of data to determine a measure of recognition of a situation
associated with the set of data in the first domain.
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